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Abstract

The computation of free energy differences through an exponential weighting of out-of-equilibrium paths (known as the
Jarzynski equality [C. Jarzynski, Equilibrium free energy differences from nonequilibrium measurements: a master equa-
tion approach, Phys. Rev. E 56 (5) (1997) 5018-5035, C. Jarzynski, Nonequilibrium equality for free energy differences,
Phys. Rev. Lett. 78 (14) (1997) 2690-2693]) is often used for transitions between states described by an external parameter
in the Hamiltonian. An extension to transitions between states defined by different values of some reaction coordinate is
presented here, using a projected Brownian dynamics. In contrast with other approaches (see e.g. [S. Park, F. Khalili-Ara-
ghi, E. Tajkhorshid, K. Schulten, Free energy calculation from steered molecular dynamics simulations using Jarzynski’s
equality, J. Chem. Phys. 119 (6) (2003) 3559-3566]), a projection is used rather than a constraining potential to let the con-
straints associated with the reaction coordinate evolve. It is shown how to use the Lagrange multipliers associated with
these constraints to compute the work associated with a given trajectory. Appropriate discretizations are proposed. Some
numerical results demonstrate the applicability of the method for the computation of free energy difference profiles.
© 2006 Elsevier Inc. All rights reserved.
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The free energy of a system is a quantity of paramount importance in statistical physics. It is of the form
F=—-p"'Inz, (1)

where = 1/(kgT) (T denotes the temperature and kg the Boltzmann constant) and Z is the partition function

2= [ exp(-pr)an )
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of the Boltzmann (or Gibbs) measure exp(—fV)du. In this expression, the function V' = V{(q) is the potential
energy of the system (denoting by ¢ the position vector) and u is a reference positive measure with support X.
The space X is the configuration space of the system. We will consider here that X is a submanifold of R*, but
all the results extend to the case when X is a submanifold of T*" (the 3N-dimensional torus, which arises when
using periodic boundary conditions). The statistics of the system are completely defined by (V, u).

In most cases, (V,p) is labeled using a d-dimensional parameter z (with d < 3N) which characterizes the
system at some coarser level. The parameter z can be independent of the current configuration of the system.
In this case, only the expression of the potential V" depends on the parameter, so that the associated switching
has sometimes been called ‘alchemical transition’. Some examples of such parameters are the intensity of an
external magnetic field for a spin system, or the temperature for a simulated annealing process. However, it is
often the case that the parameter z labels submanifolds of the configuration space, through level sets
2. ={&(q) = z} of some function £. The function ¢ is called a ‘reaction coordinate’. In this case, u (especially
the support of 1) depends on z and is defined using the orthogonal projection from R* or T to X. (this will
be made precise in Section 1.1). Standard examples of reaction coordinates are bond lengths or dihedral angles
in a molecule.

The absolute free energy (1) can be computed only for certain systems, such as ideal gases, or solids at low
temperature (resorting to the phonon spectrum) [23]. However, in many applications, the quantity of interest
is the free energy difference between an initial and a final state (characterized by two different values of the
parameter z). The free energy difference profiles indeed give information about the relative stabilities of several
species, as well as their transition kinetics. The free energy differences are much more amenable to compute
than the absolute free energy. Classical techniques to this end fall within three main classes. The first one, dat-
ing back to Kirkwood [17], is thermodynamic integration, which mimics the quasi-static evolution of a system
as a succession of equilibrium samplings, which amounts to an infinitely slow switching between the initial and
final states. The second one, the free energy perturbation method, was introduced by Zwanzig [35]. It recasts
free energy differences as a phase—space integral, so that usual sampling techniques can be employed. Notice
also that there exist many refinements for those two classes of techniques, such as umbrella sampling [31]. The
last and most recent class of methods uses dynamics arising from a switching at a finite rate. This can be done
using nonequilibrium dynamics (the so-called fast growth methods) with a suitable exponential reweighting, as
introduced by Jarzynski in [15,16]. Notice that the thermodynamic integration and free energy perturbation
methods can be seen, respectively, as the limits of infinitely slow and fast switching of nonequilibrium dynam-
ics, at least formally. Instead of being imposed a priori, this switching may also arise as the result of an equi-
librium sampling, using for example the Adaptive Biasing Force technique [7,12] or metadynamics [14]. In
those cases, the system is progressively forced to leave regions where the sampling of the reaction coordinate
has been completed.

It is still a matter of debate which method is the most efficient. While some results show that fast growth
methods can be competitive in some situations [11], other studies disagree [19]. The results of [19] indeed indi-
cate that even with the use of efficient path sampling techniques (see also [29,30,34]), fast growth methods do
not outperform conventional methods such as umbrella sampling or thermodynamic integration (at least in a
number of typical cases). However, general conclusions about the efficiency of fast growth methods are still to
be drawn, depending on the cases under consideration. We believe that there is room for improvements of this
relatively new method (e.g. by optimizing the switching schedule [24]). Let us also mention that this method is
straightforward to parallelize and naturally provides with a posteriori error bounds via the central limit the-
orem, since it involves many independent trajectories.

Most methods to compute free energy differences are well suited to the alchemical transition setting, but do
not straightforwardly extend to the reaction coordinate setting. This latter case is the focus throughout this
article. In this case, the methods described above require to consider dynamics restricted to the submanifold
2. [5]. For computations using Hamiltonian dynamics, we refer for example to [4,24]. In the stochastic case,
thermodynamic integration in the reaction coordinate case using projected stochastic dynamics has recently
been put on a firm grounding [6,9]. On the other hand, stochastic nonequilibrium dynamics a /a Jarzynski
in the reaction coordinate case was, to our knowledge, not studied mathematically. It is the aim of this
paper to perform such a study and to present a methodology to compute free energy differences in this
framework.
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Nonequilibrium computations of free energy differences in the reaction coordinate setting using stochastic
dynamics have until now used soft constraints to switch between the initial state centered on the submanifold
{&(g) = zo} and the final state centered on {£(q) = z;}. Steered molecular dynamics techniques use for example
a penalty term K(&(g) — z)? in the energy of the system [22] (with K large) to ‘softly’ constraint the system to
remain close to the submanifold {&(¢g) — z =0}, and varying the value z from 0 to 1 in a finite time 7. It is
shown in [13] how to use such a biasing potential to exactly compute free energy differences (even for a finite
K), which is of particular interest for experimental studies. From a computational viewpoint, however, it is
expected that large values of K require small integration time steps. Moreover, it is observed in practice that
the statistical fluctuations increase with larger K (see [22]). Instead, we propose to replace the stiff constraining
potential K(&(¢g) — z)* by a projection onto the submanifold {&(q) — z = 0}. This situation is reminiscent of the
case of molecular constraints, that can be enforced using a stiff penalty term, or more elegantly and often more
efficiently, using some projection of the dynamics involving Lagrange multipliers. This is the spirit of the well
known SHAKE algorithm [26].

We propose a nonequilibrium stochastic dynamics and an equality that allow to compute free energy
differences between states defined by different values of a reaction coordinate. The dynamics relies on a
projection onto the current submanifold at each time step, and we use the Lagrange multipliers associated
with this projection to estimate the free energy difference. More precisely, we use the difference between
these Lagrange multipliers and the external forcing term required for the finite time switching (see for
example the discretization (31)). The main results of the paper are the Feynman—Kac equality of Theorem
2.2 (which extends the proof of [13] to hard constraints), as well as the associated discretizations (33) and
(34).

The method we propose forces the system to pass free energy barriers, and thus enables free energy differ-
ence computations for metastable systems. Of course the reliability of the algorithm crucially depends on the
choice of the reaction coordinate, which represents the essential degrees of freedom. The reaction coordinate
should be rich enough in order to adequately describe the configuration paths of the system from the initial
state to the final state. The determination of the essential degrees of freedom of a system is a very important
problem, which is not the focus of this work. Thus, in the following, we suppose that a “good” reaction coor-
dinate is given, and we are interested in the computation of free energy differences associated with this reaction
coordinate.

Let us also notice that some recent refinements of nonequilibrium dynamics to compute free energy differ-
ences, especially path sampling techniques [34] and Interacting Particle Systems approaches [25] (which equil-
ibrate the nonequilibrium dynamics through some birth/death process based on the current work), can be
extended to the reaction coordinate setting using the techniques we present here. Moreover, we restrict our-
selves to the so-called overdamped Langevin dynamics, but it is possible to extend these results to the usual
Langevin dynamics (this is a work in progress).

The paper is organized as follows. In Section 1, the thermodynamic integration setting is outlined in the
reaction coordinate case. Section 2 then extends the method to nonequilibrium dynamics. Adapted numerical
schemes are proposed in Section 3, and some numerical results assessing the correctness of the method are
presented in Section 4. For clarity, we present the method in the case of a one-dimensional reaction coordinate
and postpone until Appendix A the proofs and the expressions for the multi-dimensional case.

1. Equilibrium computation of free energy differences

The aim of this section is to introduce the definitions of the free energy and the mean force, and to recall
how thermodynamic integration is used to compute free energy differences. The computation of the mean
force is based on projected stochastic differential equations (SDE). These SDEs will also be used for the dis-
cretization of Jarzynski equality in Section 2. This section mainly reviews results of [6].

1.1. Free energy and mean force

In the following, we denote by .# C R* the configuration space of the system when no parameter z is
involved. The state of the system is characterized by the value of a reaction coordinate ¢ : .# — [0,1]. The
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function ¢ is supposed to be smooth and such that V&(g) # 0 for all ¢ € .#. For a given value z € [0, 1], we
denote by 2. the submanifold

S.={qe . (q) =1z} 3)

and we assume that UZE[U’I]ZZ C . For each point g € X, we also introduce the orthogonal projection oper-
ator P(g) onto the tangent space to 2. at point ¢ defined by:

VE® Ve
Plg)=1d —————(q), 4
(9) ver () (4)
where ® denotes the tensor product. The orthogonal projection operator on the normal space to X, at point ¢
is defined by PH(¢) =1d — P(q).
The free energy is then defined as

F(z) = —p'In(Z.), (5)
with

Z - /Z exp(—pY)dos. (6)

where for any submanifold Z of R*", o5 denotes the Lebesgue measure induced on X as a submanifold of R*".
The associated Boltzmann probability measure is

dus, = Z_" exp(—pV)dos,. (7)

Remark 1.1 (On the definition of the free energy). Two comments are in order about formula (5). First, this
formula is valid up to an additive constant, which is not important when considering free energy differences.
Second, the potential 7 in (6) may be a potential different from the actual potential seen by the particles. More
precisely, if the particles evolve in a potential V, the standard definition of the free energy in the physics and
chemistry literature is (5) with

z.= [ exp(-pr)oco

where d¢,)_- is a measure supported by X. and defined by: for all test functions ¢,

[ d@se = [ 91V do.

This amounts to considering (5) and (6) with ¥ replaced by an effective potential ¥+ f~'In|V¢| (see Remark
A.1 for the case of a multi-dimensional constraint). Since the results we present in this paper hold irrespective
of the physical signification of the potential ¥, we may assume without loss of mathematical generality that the
free energy is indeed given by (5) and (6). Let us emphasize that, in practice, the cumbersome computation of
the gradient of the additional term f~'In|V¢| in the modified potential (which intervenes in the projected SDEs
we use, see (27) and (28) or (29) and (30)) can be avoided resorting to some finite differences, as explained in [6].

Using the co-area formula (see (42) and Proposition A.2 for a proof in the multi-dimensional case), it is
possible to derive the following expression of the derivative of the free energy F with respect to z (the so-called
mean force) (see [21,27]):

F'(z) :Z;I/Z vv§|2 A(VV + B 'H)exp(—pV)dos., (8)

where
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is the mean curvature vector field of the surface X.. The free energy can thus be expressed as an average with
respect to uy :

Fe) = [ fla)dus o), (10)
where f'is the local mean force defined by:
V¢ -1
= -(VV+pH). 11
f ver ( B H) (11)

In the next section, we will explain how it is possible to compute this average with respect to uy , without
explicitly computing £, by using projected SDEs. This avoids in particular the computation of the mean cur-
vature vector H which involves second-order derivatives of &.

The principle of thermodynamic integration is to recast the free energy difference

AF(z) = F(z) — F(0) (12)

between two reaction coordinates 0 and z as an integral over the mean force:
AF(z) = / F'(y)dy. (13)
0

Therefore, in practice, thermodynamic integration computation of free-energy is as follows. First, the free en-
ergy difference AF{(z) is estimated using quadrature formulae for the integral in (13), such as for example a
Gauss—Lobatto scheme:

AF(z) ~ Za)iF'(y[),
=0

where the points {yg,»1,...,yx} are in [0,z] and {wg, w1,...,wg} are their associated weights. Second, the
derivatives F”(y;) are computed as canonical averages over the submanifolds X, , using projected SDEs (see
next section).

To obtain a free-energy profile (and not only a free-energy difference for a fixed final state), it is possible to
approximate the function AF(z) on the interval [0, 1] by a polynomial. This can be done for example by inter-
polating the derivative F’ by splines, and integrating the resulting function (consistently with the normaliza-
tion AF(0) = 0).

1.2. Projected stochastic differential equations

In this section, we explain how to compute the mean force F'(z) defined by (8) using projected SDEs, for a
fixed parameter z. We consider the solution Q; to the following SDE:

QO € ZZ?
14
{dQ, — _P(0)VV(0,)di + \/25'P(Q) o dB, (14)

where B, is the standard 3N-dimensional Brownian motion and o denotes the Stratonovich product. It is pos-
sible (see [6]) to check that u, is an invariant probability measure associated with the SDE (14). Under suit-
able assumptions, which we assume in the rest of the section, on the potential ¥ and the surface ., the process
0, is ergodic with respect to u, . Moreover, the SDE (14) can be rewritten in the following way:

dQ, = —VV(Q,)dt + \/2p7'dB, + VE(Q,)dA,, (15)

where A, is a real valued process, which can be interpreted as the Lagrange multiplier associated with the con-
straint £(Q,) = z (see the discretization in Section 3.1). This process can be decomposed into two parts:

dA, = dAP + dAL. (16)
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The so-called martingale' part A7 (whose fluctuation is of order VAt over a time step Ar) is

o Vé
dB,, 17
ver 5(0,) - dB, (17)
where - implicitly denotes the Ité product. The so-called bounded variation part A (whose fluctuation is of
order At over a time step At) is
\%4 o V¢
dA; =—-5(0) - VV(Q)dr +
S f VP
/'being the local mean force defined above by (11). Thus, since Q, is ergodic with respect to uy. the mean force
can be obtained as a mean over the Lagrange multiplier A;:

dnr = /28"

(Q) - H(Q,)dt = f(Q,)ds, (18)

Proposition 1.2. The mean force is given by:

= lim —/ dA, = lim —/ dal. (19)

Notice that the martingale part dA}", which has the largest fluctuations, has zero mean. In order to reduce
the variance, it is thus numerically convenient to perform the mean over the bounded variation part dAf rather
than over the whole Lagrange multiplier dA, (see Section 3).

We refer to [6] for a proof of Proposition 1.2, as well as for formulae involving higher dimensional reaction
coordinates. Such ideas have been used for a long time in the framework of Hamiltonian dynamics (see
[21,27)).

The interest of Eq. (19) is that the SDE (15) can be very naturally discretized as explained in Section (3.1)
below. Then, the average over a discretized trajectory of the process A, converges to F'(z). This is particularly
convenient for numerical purposes since it does not ask for explicitly computing the local force f. For further
details, we refer to [6] and to Section 3.1. In the next section, we use these ideas for the computation of the free
energy difference given through the Jarzynski equality.

2. Nonequilibrium stochastic methods in the reaction coordinate case

As opposed to quasistatic methods where the free energy difference between an initial state and a final state
is expressed by (13), in nonequilibrium methods, the free energy difference is expressed using a Feynman—Kac
average over nonequilibrium paths [15,13,25]

AF(1) = F(1) = F(0) = -~ InE(e ™" ™), (20)

where #°(T) denotes the total work exerted along a nonequilibrium path (Q,,z(?)),(0, 77, With z(0) = 0 and
Z(T)=1.

We wish here to extend the Feynman—Kac formula derived in [13] for a parameter z which appears only in
the potential V, to the reaction coordinate case, where z labels submanifolds 2, (defined by Eq. (3)) of the state
space. To this end, we need to make precise the evolution of the constraints.

We consider a %' path z : [0, T] — [0, 1] of values of the reaction coordinate &, with z(0) =0, and z(7) = 1.
Recall that the associated family of submanifolds of admissible configurations is denoted by

2 ={q € M, L(q) ==(1)},
and that the associated Boltzmann probability measures are
duzz(r) = 227(3) eXp(—ﬁV)dO'};zm

We construct a diffusion (Q;),cf0,77 50 that O, € X, for all ¢ € [0, T] and (Q;),<[0, 7 satisfies the following prop-
erties (see Section 2.1 for a more rigorous formulation):

! For our purposes, it is enough to think of a martingale as an It6 integral with respect to the Brownian motion (B,),=o.
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Oy~ Hs_ o)
e Forall t € [0,T], Q;14, is the orthogonal projection on 2,14, of the position obtained by the unconstrained

displacement: Q, — V¥ (Q,)dt + /28 'dB,.
To each realization of this process, a work #7(¢) can be associated as

7o | £(0,)2/(s)ds,

where f is the local mean force defined above by (11). Then, we prove that the Feynman-Kac formula
(20) holds for the free energy F associated with the reaction coordinate and defined by (5). Notice that,
at least formally, in the limit of an infinitely slow switching from z(0) =0 to z(7) =1, Formula (20) cor-
responds to the thermodynamic integration formula (13). Formula (20) enables the computation of free
energy difference at arbitrary rates, through a correction consisting in a reweighting of the nonequilib-
rium paths.

The rest of this section is organized as follows. In Section 2.1, we make precise the process Q, we consider.
Then, in Section 2.2, we state the Feynman—Kac formula (20) for an one-dimensional reaction coordinate. We
recall that the formulae for the general case involving higher dimensional reaction coordinates, as well as the
main proofs, are presented in Appendix A.

2.1. The nonequilibrium projected stochastic dynamics

The considered diffusion reads, in the Stratonovich setting:

Q() ~ .L‘ZZ((]))

d0, = —P(Q,)VV(0Q,)dt + /287" P(Q,) o dB, + VE(Q,)dA™, (21)
ext 21

da;” = Ive)r

With a view to the discretization of Q,, let us notice that Q, can be characterized by the following property:

Proposition 2.1. The process Q, solution to (21) is the only Ité process satisfying for some real-valued adapted Ité
process (Ay)cio1:

Qo ~ :LLZZ((,)a
dQ, = —V¥(0,)dt + /28 dB, + VE(Q,)dA,,
Q) = =(1).
Moreover, the process (Ag)ero.1 can be decomposed as
A =A™ 4 AT A (22)
with the martingale part
V¢
-dB;,
|Vf|2 (Qr) t
the local force part (see (11) for the definition of f)

dAl = WV; (0) - (VV(Q)di + 7 H(Q)dt = £(0,)dr, (23)

dA™ = —y/287"

and the external forcing (or switching) term

ext __ Z/(t) dt

LV
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The proof of Proposition 2.1 is easy and consists in computing d&(Q,) by It6’s calculus and identifying the
bounded variation and the martingale parts of the stochastic processes.

The difference with the projected stochastic differential Eq. (14) considered in the thermodynamic integra-
tion setting is that the out-of-equilibrium evolution of the constraints z(7) creates a drift V&(Q,)dAS™ along the
reaction coordinate. This drift can be interpreted as an external forcing required for the switching to take place
at a finite rate, and must be subtracted from the Lagrange multiplier 4, in order to obtain a correct expression
for the work #7(¢) involved in the Feynman—Kac fluctuation equality (see Eq. (25) below). This correction is
quantitatively important when the switching is not slow.

2.2. The Feynman—Kac fluctuation equality

Let us define the nonequilibrium work exerted on the diffusion (21) by:

- [ (02 ()ds, (24)

where f'is the local mean force defined above by (11). In practice, the nonequilibrium work #7(¢) can be com-
puted by using the local force part d/lf (see (23)), as in the thermodynamic integration method (see (19)). Thus,
the formula we use to compute #7(¢) is rather:

W (1) = /O tz’(s)d/lg, (25)

since /lf can be obtained by a natural numerical scheme (see Section 3), avoiding the cumbersome computa-
tions of the mean curvature vector H in the expression of f (as already explained in Section 1.1).

We can now state the generalization of the Jarzynski nonequilibrium equality to the case when the switch-
ing is parameterized by a reaction coordinate.

Theorem 2.2 (Feynman—Kac fluctuation equality). For any test function ¢ and ¥t € [0,T), it holds

Z, gy
o / edpy,, = E(p(Q)e ™).
z(0) Z.)

In particular, we have the work fluctuation identity: ¥Vt € [0,T],
AF(z(1)) = F(z(r)) = F(2(0)) = =~ In(E(e™"")). (26)

As in the alchemical case [13], the proof follows from a Feynman—Kac formula. The proof of this theorem
is presented in the general multi-dimensional case in Appendix A (see Theorem A.5).

3. Discretization of the dynamics

The main interest of the above formulae (13)—(19), (25) and (26) is that they admit natural time discretiza-
tions. The principle is to use a predictor—corrector scheme for the associated dynamics (14) and (21), and to
use the Lagrange multiplier A, to compute the local mean force f.

Section 3.1 is mainly a review of the results of [6] and presents this idea in the context of thermodynamic
integration. Then, we extend the method to the case of evolving constraints in Section 3.2.

3.1. Discretization of the projected diffusion

For the projected SDE (15) onto a submanifold 2. = {£(q) — z = 0}, two discretizations of the dynam-
ics, extending the usual Euler—-Maruyama scheme, are proposed in [6]. These numerical schemes for con-
strained Brownian dynamics are in the spirit of the so-called RATTLE [2] and SHAKE [26] algorithms
classical used for constrained Hamiltonian dynamics, and also related with the algorithms proposed in
[32,1,20].
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The first one is:

Qn+l = Qn - VV(Qn)At + \/ 2Atﬁ71Un + AAn+1v§(Qn+l)7 (27)
where A4, is such that £(0,,,) =z,

where At is the time step and U” is a 3N-dimensional standard Gaussian random vector. Notice that (27) ad-
mits a natural variational interpretation, since 0, can be seen as the closest point on the submanifold X, to

the predicted position O, — VV(Q,)At + \/2Atp'U,. The real A4, is then the Lagrange multiplier associ-
ated with the constraint &(Q,,+1) = z.
Another possible discretization of (15) is

Qn+l = Qn - VV(Qn)At + \/ 2Atﬁ71 Un + AAnJrlvé(Qn)) (28)
where A4, is such that £(0,,,) =z

Although this scheme is not naturally associated with a variational principle, it may be more practical since its
formulation is more explicit. Notice also that we use the same notation AA,, for the Lagrange multipliers for
both (27) and (28) (and later for (29) and (30)), since all the formulas we state in terms of AA,, are verified
whatever the constrained dynamics.

To solve Eq. (27), classical methods for optimization problems with constraints can be used. We refer to
[10] for a presentation of the classical Uzawa algorithm, and to [3] for more advanced methods. Problem
(28) can be solved using classical methods for nonlinear problems, such as the Newton method (see [3]).
We also refer to Chapter 7 of [18] where similar problems are discussed, for the classical RATTLE and
SHAKE schemes used for Hamiltonian dynamics with constraints.

Both schemes are consistent (the discretization error goes to 0 when the time step Az goes to 0) with the
projected diffusion (15) (see [6]). Accordingly, A4, is a consistent discretization of f;”“ dA, and therefore,
it can be proven [6]:

T/At
/
fim lim 7384, = '
which is the discrete counterpart of the trajectory average (19). In [6], a variance reduction technique is pro-
posed, which consists in extracting the bounded variation part AAf, of AA, (resorting locally to reversed
Brownian increments). We give some details of an adaptation of this method for evolving constraints in
the next section.

3.2. Discretization with evolving constraints

When nonequilibrium dynamics are considered, the constraint is stated as &(Q,) = z(¢). The reaction coor-
dinate path is first discretized as {z(0),...,z(¢ty,)} where N7 is the number of time steps. For example, equal
time increments can be used, in Wthh case At =-L and ¢, = nAt (we refer to Remark 3.1 below for some
refinements). The initial conditions Qy are sampled accordmg to us,. A way to do that is to subsample a long
trajectory of the projected SDE on X (using the schemes (27) or (28))

The projected SDE on evolving constraints (21) is then discretized with the scheme (27) or (28), taking into
account the evolution of the constraint:

Qn+1 = Qn - VV(QH)At + \/ 2Atﬁ71UVl + AAn+lvé(Qn+l)7 (29)
where A/, is such that £(0,,,) = z(t.11),

or

Qn+l = Qn - VV(Qn)At + \/ 2At,871Un + AAn+lvé(Qn)7 (30)
where A4, is such that £(0,.,) = z(t,41).
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It remains to extract the force part AAn .1 from the discretized Lagrange multiplier A4, (consistently with
(22)). We propose two methods. First, this can be done by simply subtracting the drift and the martingale part

AL = Ay, — ) =20 gt V@) 31
v, P eo)r G1)

Another possibility in the spirit of the variance reduction techniques used in [6] can also be used. Consider the
following coupled dynamic with locally time-reversed constraint evolution (written here for the scheme

(29)):

Qn+l Q VV(Qn)At - \/ 2Atﬂ U + AAnJrlvé(QnJrl)
with AAR, | such that:

1
E(é(er:rl) + é(QrH—l)) = é(Qn)
The position Qn .1 is computed as @, in (29), but with a projection on Zzg ~¢(0,,,) Instead of X, ), and
using the Brownian increment —+/AtU, instead of +/AtU,. Notice that in case of a constant 1ncrement
for the constraints, we have &(QR,,) =2¢(0,) — &(Q,,1) = z(t,-1). The force part AA! , is then obtained

through

1
AL, = 5 (Adpir + AL, (32)

which can be shown to be a consistent time discretization of f;”“ dal.

3.3. Computation of free energy using a Feynman—Kac equality

The consistent discretization of Q,, and more precisely of f " d/lf we have obtained in the previous section
can now be used to approximate the work #7(¢) defined by (25) by

Wy =0, 13
Wn+1 W + %A/ﬁwh ( )
using either the dynamics (29) or (30), and the local force part of the Lagrange multiplier computed by (31) or
(32). Averaging over M independent realizations (the corresponding works being labeled by an upper index
1 < m < M), an estimator of the free energy difference AF(z(T)) is, using Theorem 2.2,

AF((T) = - 'In (ﬁ > ﬂ) (34)

The estimator AF (z(T)) converges to AF(z(T)) as At — 0 and M — +oo. It is clear that the estimation of
AF(z(T)) by (34) is straightforward to parallehze since the (W7 )<<y are 1ndependent

Notice that, even in the limit A7 — 0, AF (z(T)) is a biased estimator. Indeed, exp(— BAF (z(T))) is an unbi-
ased estimator of exp(—fAF(z(T))), and therefore, using the concavity of In, [E(ﬁ’ (z(T))) = AF(z(T)). Recent

works propose corrections to this systematic bias using asymptotic expansions in the limit M — +oo (see for
instance [24,36]).

Remark 3.1 (On practical implementation). Notice that it may be useful to adaptively refine the time step over
each stochastic trajectories, using for example the work evolution rate (¥, — % ,-1),-, as a refinement
criterion.

As noticed in [24], it is also possible to optimize the evolution of the constraint z(¢), for example by
minimizing the variance of the results obtained for a priori schedules for the evolving constraint on a small set
of preliminary runs.



634 T. Lelievre et al. | Journal of Computational Physics 222 (2007) 624-643
4. Numerical results

We present in this section some illustrations of the algorithm we have described above to compute free
energy differences through nonequilibrium paths. In Section 4.1, a two-dimensional toy potential V" is used,
for which we can compare the results with analytical profiles. A more realistic test case in Section 4.2 demon-
strates the ability of the method to compute free energy profiles in presence of a free energy barrier.

Our aim in this section is not to compare the numerical efficiency of the thermodynamic integration method
presented in Section 1 (or any other method) with nonequilibrium computations, since it is difficult to draw
general conclusions about such comparisons. However, we compare on a simple example in Section 4.1, the
numerical efficiency of out-of-equilibrium computations using a few long trajectories or many short trajecto-
ries, at a fixed computational cost.

4.1. A two-dimensional toy problem

We consider the two-dimensional potential introduced in [33]
V(x,y) = cos(2nx)(1 + d1y) + d»)?, (35)

where d; and d, are two positive constants. Some corresponding Boltzmann—Gibbs probability densities are
depicted in Fig. 1.

We want to compute the free energy difference profile between the initial state x = xo = —0.5 and the tran-
sition state x = x; = 0. Notice that the saddle point is (xq,y1) = (0,0) for d; =0, but is increasingly shifted
toward lower values of y; as d; increases. We parameterize the transition along the x-axis, either with the reac-
tion coordinate

<(x,y) =

X — Xo

(36)

Xl—xo7

or with the reaction coordinate (n > 2)

1 x—x0\"
) = | (14 222) 1) 37)

For these reaction coordinates, the initial state (respectively the transition state) corresponds to a value of the
reaction coordinate z = 0 (respectively z = 1). The analytical expression of the free energy difference that we
consider here is, for a reaction coordinate v(x,y) (such as ¢ or 5, defined above)

Je! V<x‘y>5v<x,y>—z>

where the distribution 6, ). is defined in Remark 1.1 above. Notice that even though the initial state
2o = {x = —0.5} and the final state X = {x = 0} are the same for the reaction coordinates ¢ and 7,, the asso-

AF,(z) = = 'In (

AN

0.01 1

0.005

X axis

Fig. 1. Plot of some probability densities corresponding to the potential (35) for § = 1, d» = 2n°, and d; = 0 on the left or d; = 10 on the
right.
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Fig. 2. Free energy profiles using the potential (35) with § = 1, d; = 30, and d» = 2%, and the reaction coordinate (36) on the left, or the
reaction coordinate (37) with n =5 on the right. Analytical reference profiles are in dotted lines. The dashed lines (respectively the solid
lines) represent the upper and lower bound of the 95% confidence interval (obtained over 100 independent realizations) for nonequilibrium
computations with M = 10° replicas (respectively with M = 10* replicas). The switching time is 7= 1 and the time step is Az = 0.005 on
the left and Az = 0.0025 on the right.

ciated free energy differences differ. This is due to the fact that V& # Vi, and therefore d¢(yy)—: 7 Oy (ry)—z-
More precisely,

(d,)?
4d,

AF:(z) = — cos(2mxy) + cos(2mx:(z)) + (cos?(2mxy) — cos?(2mx;(2))),

with
xe(2) = xo 4 z(x1 — x0),

and

AF, (z) = —cos(2mxg) + cos(2mx, (z)) + (chl)z (cos?(2mxg) — cos?(2mx,, (2))) + n-l In (1 + M)

with
%, (2) =x0+ (2" = Dz+ D" = 1)(x1 = xo).

Free energy profiles for the two reaction coordinates considered here can then be computed using the discret-
ization proposed in Section 3.3. Averaging over several realizations, error estimates can be proposed: in par-
ticular, the standard deviation can be computed for all intermediate points z € [0, 1], so that, for all values z, a
confidence interval around the empirical mean can be proposed. We represent on Fig. 2 the analytical profiles,
and the lower and upper bounds of the 95% confidence interval for M = 10> and M = 10*, using here and
henceforth a linear schedule: z(7) = ¢/T. The initial conditions are created by subsampling every 100 time steps
a trajectory constrained to remain on the initial submanifold X,. As announced above, the profiles obtained
with #,, and ¢ are not exactly the same, though the general shape is preserved. These figures also show that the
variance increases with z. Therefore, to further test the convergence of the method, it is enough here to char-
acterize the convergence of the value for the end point at z = 1.

We study the convergence of the end value AF(1) computed with the out-of-equilibrium dynamics with
respect to the number of replicas M and the time step Atf, using the reaction coordinate (36) as an example.
The results are presented in Table 1. The time step Az does not seem to have any noticeable influence on
the final result, as long as it remains in a reasonable range. As expected, the error gets smaller as M increases.
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Table 1

Free energy differences AF(1) obtained by nonequilibrium computations for the reaction coordinate (36) with f =1, d, =1, and d, = 30
At T M AF(2(T))
0.001 1 10° 2.056 (0.274)
0.0025 1 10° 2.033 (0.259)
0.005 1 10° 2.076 (0.286)
0.01 1 103 2.073 (0.278)
0.005 1 10° 2.076 (0.286)
0.005 1 10* 2.014 (0.116)
0.005 1 10° 2.001 (0.045)
0.005 1 10* 2.014 (0.116)
0.005 10 10° 1.999 (0.029)
0.005 100 10 2.001 (0.025)
0.005 1000 10! 1.997 (0.022)

The results are presented as follows: [E(AAF (z(T))) ( Var(AAF (z(T)))> (the estimates of these quantities are obtained by averages over 100
independent runs). The exact value is AF(1) = 2.

In Table 1, we also show that, in this particular case, for a fixed computational cost and provided that the
switching time is large enough,? computing many short trajectories is as efficient as computing a few longer
ones (the mean and the variance are essentially unchanged). This conclusion also holds for the more realistic
test case presented in next section. The computation of many trajectories can be straightforwardly and very
efficiently parallelized.

We finally mention that we are able to exhibit the bias of the Jarzynski estimator in this particular case (see
Section 3.3 and [36]). We observe that the estimator AF(z(T)) is generally greater than AF(z(7)). More pre-
cisely, averaging over 10* re/;alizations, with the parameters 7= 1 arlcl At = 0.005, we obtain the following 95%
confidence intervals for AF(z(T)), for various values of M : AF(z(T)) = 2.0576 £ 0.0059 for M = 10°,
AF (z(T)) = 2.0095 £ 0.0026 for M = 10*, and AF(z(T)) = 2.00075 +0.0010 for M = 10°. As expected, the
bias goes to zero when M — oo.

4.2. Model system for conformational changes influenced by solvation

We consider a system composed of N particles in a periodic box of side length /, interacting through the
purely repulsive WCA pair potential [8,28]:

4@ - +e itr<n,

0 if ¥ > ry,

Vwea(r) = {

where r denotes the distance between two particles, € and ¢ are two positive parameters and ry = 21/, Among

these particles, two (numbered 1 and 2 in the following) are designated to form a dimer while the others are
solvent particles. Instead of the above WCA potential, the interaction potential between the two particles of
the dimer is a double-well potential

V) = h [1 _wl | (38)

w

where /1 and w are two positive parameters. The potential Vg exhibits two energy minima, one corresponding
to the compact state where the length of the dimer is r = r(, and one corresponding to the stretched state where
this length is r = ro + 2w. The energy barrier separating both states is 4. Fig. 3 presents a schematic view of the
system.

2 Of course, this threshold time depends on the system under study.
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Fig. 3. Schematic views of the system, when the dimer is in the compact state (Left), and in the stretched state (Right). The interaction of
the two particles forming the dimer is described by a double well potential. All the other interactions are of WCA form.

The reaction coordinate used is

9, — 45| — o
Ho) =0, (39)
where ¢; and ¢, are the positions of the particles forming the dimer. The compact state (respectively the
stretched state) corresponds to a value of the reaction coordinate z = 0 (respectively z = 1).

The parameters used for the simulations are: f=1,e=1,0=1,h=1, w=0.5, and N = 16. We still use a
linear schedule: z(¢) = ¢/T. The side length / of the simulation box takes two values: / = 1.3 (high density state)
and /=3 (low density state). Fig. 4 presents some plots of the free energy difference profiles computed using
nonequilibrium dynamics, as well as reference profiles obtained by thermodynamic integration. The results
show that nonequilibrium estimates are consistent with thermodynamic integration. Our experience on this
particular example also shows that it is computationally as efficient to simulate several short nonequilibrium

1.8 T T T T T T T T T 1.8 T T T T T T T T T

14} - 1.4
12} - 1.2

|
0.8
0.6
0.4
0.2

0

Free energy difference A F(z)
Free energy difference A F(z)

-0.2+ E
-0.4+ i

. _06 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Parameter z Parameter z

Fig. 4. Comparison of free energy difference profiles using the reaction coordinate (39), at low densities (/= 3) on the left, and high
densities (/= 1.3) on the right. The double well potential Vg is represented in dashed line. The reference free energy difference profile
computed with a very precise thermodynamic integration is represented in dotted line. We used Nt; = 101 thermodynamic integration
points (uniformly distributed over (0,1)) and averaged the mean force over My, = 107 configurations for each fixed value of z. The upper
and lower bounds of the 95% confidence interval (obtained over 50 independent realizations) for out-of-equilibrium computations are
represented with solid lines. We used M = 1000 nonequilibrium trajectories, a switching time 7= 1, and a time step Az = 0.00025 (left) or
At =0.0005 (right).
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trajectories (provided the switching time is not too small, say, 7"~ 1 in the units used here, so that the diffusion
process can take place), or one single long trajectory where the switching is done slowly (as already observed in
Section 4.1).

The free energy profiles highlight the relative stabilities of the two conformations of the dimer: at low den-
sities (Fig. 4, Left) the stretched conformation has a lower free energy and is thus expected to be more stable
(this can indeed be verified by running long molecular dynamics trajectories and monitoring the time spent in
each conformation). When the density increases, the compact conformation becomes more and more likely. At
the density considered in Fig. 4 (Right), the compact state already has a free energy slightly smaller than the
stretched state. Notice also that the free energy barrier increases as the density increases, so that spontaneous
transitions are less and less frequent. But since we know here a reaction coordinate, we can enforce the tran-
sition. This prevents us from running and monitoring long trajectories to get sufficient statistics to compare
relative occurrences of both states.
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Appendix A. The multi-dimensional case

In this appendix, we generalize the previous results for nonequilibrium computation of free energy differ-
ences to the case of multi-dimensional reaction coordinates.

A.1. Geometric setting and basic notation and formulae

We consider a d-dimensional system of smooth reaction coordinates ¢ = (&,,...,¢&,) : R* — RY, nonsingu-
lar on an open domain .# C R*

Vg € ., range(VEi(q),...,Viq)) =d,

and a smooth path of associated coordinates
z=(z1,...,24) : [0,T] = R".

Accordingly, we define for all ¢ € [0, 7] a smooth submanifold of codimension d contained in .#:
T ={q e R, &g) ==2(1)} C .

In the constraints space R, coordinates are labeled by Greek letters and we use the summation convention on
repeated indices. In the configuration space R*", coordinates are labeled by Latin letters and we also use the
summation convention on repeated indices. We denote by X - Y = X;Y, the scalar product of two vector fields
of R*", by M:N = M, ;N the contraction of two tensor fields of R*, and by (X ® Y);; = XY, the tensor prod-
uct of two vector fields of R*".

The d x d matrix

G,, = V¢, - Vi,
is the Gram matrix of the constraints. It is symmetric and strictly positive on .#. We denote by G - the ()

component of G, the inverse matrix of G. At each point g € .#, we define the orthogonal pI‘O_]eCtIOIl
operator

2V VE,

CXy
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onto the normal space to X, and the orthogonal projection operator
P=1d - P+
onto the tangent space to X¢). The mean curvature vector field of the submanifold is defined by:
H=-V-((detG)'*G,!V¢,)(det G) Ve, (40)
and satisfies:
H; = P; VP

We recall the divergence theorem on submanifolds: for any smooth vector field ¢ : R* — R*" with compact
support,

/Z din(¢)dO'ZZ = —L H- ¢d0—227 (41)

where divs(¢) = P;;V,¢; denotes the surface divergence, and o5, is the induced Lebesgue measure on the sub-

manifold Z. of R*.
We will also use the co-area formula: for any smooth function ¢ : R* — R,

Ha)@etG(a) g = [ [ gaoa 42)

R3N

These definitions and formulae are provided with more details in [6].
A.2. Free energy and constrained diffusions for multi-dimensional reaction coordinates
As in the one-dimensional case, the Boltzmann-Gibbs distribution restricted on the submanifold X. is
defined by:
dpy, = Z. " exp(~fV)dos,,
with

ZZ:/ exp(—pV)doy..

The associated free energy is:

F(z) = —fp 'In(Z.).

Remark A.1 (On the definition of the free energy: the multi-dimensional case). As in the one-dimensional case
(see Remark 1.1), if the particles initially evolve in a potential V, the classical definition of the free energy is as
above, but with V replaced by an effective potential V' + ﬁ_lln((detG)l/ 2). The computation of the gradient of
this potential in the dynamics then involves second-order derivatives of ¢, which can be approximated in
practice by finite differences (see [6]).

For any 1 < o < d, we now introduce the local mean force along V¢, (which generalizes (11)):
fi=G, Ve - (VV + B 'H). (43)

As in the one-dimensional case (see Eq. (10)), we obtain the derivative of the mean force by averaging the local
mean force:

Proposition A.2. The derivative of the free energy F with respect to z, is given by:

VdF(Z):/fod,LLZZ.
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Proposition A.2 is a corollary of:

Lemma A.3. For any test function ¢ with compact support in M, we have:
V([ oexn-prides ) = [ (6,195 Vo~ i) exp(-p)das.
2, Py

Proof. It is enough to prove the formula in the case V= 0, up to a modification of the test function ¢. For any
test function g : R — R with compact support, we have (using successively an integration by parts on R, the
co-area formula (42), an integration by parts on R*", and finally again (42)):

/ g(z,)V, </ (pdcr;z)dz: —/ / g (z,)pdos dz, = —/ 'g’oéa(p(det G)l/qu,
RY 3z R? Jx. RN

= - / G,IVE, - V(go&,)p(det G)dg,
RNV v
:/ g0 &,V - (G,!VE,p(det G)'?)dg,
RBN ’

= / g2(z,) / V- (G,'V¢E p(det G)'/?)(det G) " *doy. dz,
R z, A

which gives the result using the expression (40) of the mean curvature vector H. [
We now define the constrained diffusion (which generalizes (21)):
Oy ~ Mz gy
dQ, = —P(Q,)VV(Q,)dt + /287 'P(Q,) 0 dB, + VE,(0Q,)d A, (44)
d/lz’ff = G;;(Q,)z;,(t)dt, VI <a<d
The stochastic process Q, can be characterized by the following property:

Proposition A.4. The process Q; solution to (44) is the only Ito process satisfying for some adapted Ito process
(At - s Agicro.m with values in R?:

Qo ~ .“zz(o)a
dQ, = —VV(Q,)dt + /2 'dB, + VE,(0Q,)dA,,,
£(0,) = =(0).

Moreover, the process (A, )ici0.m can be decomposed as

Ay = A+ AL, + A

i)
with the martingale part
day, = —\/27'G,1V¢E(Q) - dB,,
the local force part (see (43) for the definition of f,)
A}, = £,(0)dr,
and the external forcing (or switching) term
Ay = G;;,(Q[)zf/,(t)dt.

The proof consists in computing d&(Q,) by 1t0’s calculus and identifying the bounded variation and the
martingale parts of the stochastic processes.
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A.3. The Feynman—Kac fluctuation equality

Theorem 2.2 is generalized as:

Theorem A.5 (Feynman-Kac fluctuation equality). Let us define the nonequilibrium work exerted on the
diffusion Q, solution to (44) by:

/ £:(0,)Z,(s)ds = /0 tz;(s)d/l;s.

Then, we have the following fluctuation equality: for any test function ¢, and ¥Vt € [0, T],

Z
22 [ pdus, = E(o(@)e ) (45)
2(0) Jx,,

In particular, we have the work fluctuation identity: ¥Vt € [0, T],
AF(z(1)) = F(2(1)) = F(2(0)) = ="' In(E(e ")) (46)

Proof. Forany s € [0,7]and x € ., let us introduce (Q;") |
starting from x at time s:

Qi’x =X,

dOy* = —P(Q")VV(Q;")dr + /287 P(Q)Y) 0 dB, + V&,(0;)dASY, (47)
dASY = G, (072 (n)dt, V1<a<d

o,

the stochastic process satisfying the SDE (44),

tels,T)>

Notice that for any s € [0, 77, there is an open neighborhood (s, s) x .4 of (5,2) in R x .# such that the
diffusion (O} )te ;) femains in .# almost surely. This holds since this process satisfies d£(Q0;") = Z/(¢)d¢ and
therefore &(Q;) = &(x) + z(¢) — z(s). This gives usual regularity assumptions sufficient to get a backward
semi-group (¢ being from now on fixed in (0, 7) and s varying in [0, 7]):

ut5.0) = (o) e (<1 [ 102000 )

satisfying the following partial differential equation (PDE) on (s7,s") x .#:

Ou = —Ly(u(s,.)) + Bz,(s) fuu,
where L, is the generator of the diffusion Q, solution to (44):
L=B'P:V*=PVV-V+p'H-V+Z(s5)G, V&, V.

Now, using Lemma A.3, we have:

d / u(s, ) exp(—pV)das,, = / (~Ly(u(s., ) + 2,(5)G,IVE, - Vu(s, ) exp(—pV)dos, .
ds S 5

2(s)

= —/ (B~'P:Vu(s,.) — PVV -Vu(s,.) + f'H - Vu(s,.)) exp(—pV)dos,,
22(s)

= —ﬁ’l/ (divs(Vu(s,.)exp(=pV)) + H - Vu(s,.) exp(=pV))dos,,= 0,
by the divergence theorem (41). Therefore

/ u(t,.)exp(—pV)doy,, = / u(0,.) exp(—pV)dos,,
2. 2(0)
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which yields
| oesnt-prito, =zt (e (-5 [ £@100)).
2

where Q, satisfies (44). This proves (45) and (46) is obtained by taking ¢ =1. O

A.4. The numerical scheme

The adaptation of the algorithm we propose for the one-dimensional case to the multi-dimensional case is
straightforward. Indeed, the generalizations of schemes (29) and (30) to the multi-dimensional case are,
respectively:

Qn+1 = Qn - VV(QH)At + \/ 2Atﬁ71Un + AAmn-HVéoc(QnJrl)’
where (AA,,11) <,y 18 such that £(0,,) = z(t,11),

Oyt = 0, = VV(Q,)A1 + 1/ 2A157 U, + Al 11V E,(Q,),
where (AA,,11) <,y 18 such that £(Q,. ) = z(t,11).

The force part AA;n of A4, is obtained by similar procedures as those described in Section 3.2. For example,
the generalization of (31) is:

AAg,n-H = AAypi1 — G;} (0,)(z(tus1) — z,(ta)) + \V 2Atﬂ71G;;V§},(Qn) Uy
The generalization of (32) is also straightforward.

Now, the estimator AF (z(T)) of the free energy difference AF(z(T)) is given by (34), with the following
approximation of the work #7(¢):

Wo =0,
W,,H:W"+Z«(‘;+I)7*Z7(’H)AAI°

il —In oan+1?

which generalizes (33). Notice that Remark 3.1 also holds for a multi-dimensional reaction coordinate.
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