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Abstract

The computation of free energy differences through an exponential weighting of out-of-equilibrium paths (known as the
Jarzynski equality [C. Jarzynski, Equilibrium free energy differences from nonequilibrium measurements: a master equa-
tion approach, Phys. Rev. E 56 (5) (1997) 5018–5035, C. Jarzynski, Nonequilibrium equality for free energy differences,
Phys. Rev. Lett. 78 (14) (1997) 2690–2693]) is often used for transitions between states described by an external parameter
in the Hamiltonian. An extension to transitions between states defined by different values of some reaction coordinate is
presented here, using a projected Brownian dynamics. In contrast with other approaches (see e.g. [S. Park, F. Khalili-Ara-
ghi, E. Tajkhorshid, K. Schulten, Free energy calculation from steered molecular dynamics simulations using Jarzynski’s
equality, J. Chem. Phys. 119 (6) (2003) 3559–3566]), a projection is used rather than a constraining potential to let the con-
straints associated with the reaction coordinate evolve. It is shown how to use the Lagrange multipliers associated with
these constraints to compute the work associated with a given trajectory. Appropriate discretizations are proposed. Some
numerical results demonstrate the applicability of the method for the computation of free energy difference profiles.
� 2006 Elsevier Inc. All rights reserved.
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The free energy of a system is a quantity of paramount importance in statistical physics. It is of the form
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F ¼ �b�1 ln Z; ð1Þ

where b = 1/(kBT) (T denotes the temperature and kB the Boltzmann constant) and Z is the partition function
Z ¼
Z

R
expð�bV Þdl ð2Þ
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of the Boltzmann (or Gibbs) measure exp(�bV)dl. In this expression, the function V ” V(q) is the potential
energy of the system (denoting by q the position vector) and l is a reference positive measure with support R.
The space R is the configuration space of the system. We will consider here that R is a submanifold of R3N , but
all the results extend to the case when R is a submanifold of T3N (the 3N-dimensional torus, which arises when
using periodic boundary conditions). The statistics of the system are completely defined by (V,l).

In most cases, (V,l) is labeled using a d-dimensional parameter z (with d� 3N) which characterizes the
system at some coarser level. The parameter z can be independent of the current configuration of the system.
In this case, only the expression of the potential V depends on the parameter, so that the associated switching
has sometimes been called ‘alchemical transition’. Some examples of such parameters are the intensity of an
external magnetic field for a spin system, or the temperature for a simulated annealing process. However, it is
often the case that the parameter z labels submanifolds of the configuration space, through level sets
Rz = {n(q) = z} of some function n. The function n is called a ‘reaction coordinate’. In this case, l (especially
the support of l) depends on z and is defined using the orthogonal projection from R3N or T3N to Rz (this will
be made precise in Section 1.1). Standard examples of reaction coordinates are bond lengths or dihedral angles
in a molecule.

The absolute free energy (1) can be computed only for certain systems, such as ideal gases, or solids at low
temperature (resorting to the phonon spectrum) [23]. However, in many applications, the quantity of interest
is the free energy difference between an initial and a final state (characterized by two different values of the
parameter z). The free energy difference profiles indeed give information about the relative stabilities of several
species, as well as their transition kinetics. The free energy differences are much more amenable to compute
than the absolute free energy. Classical techniques to this end fall within three main classes. The first one, dat-
ing back to Kirkwood [17], is thermodynamic integration, which mimics the quasi-static evolution of a system
as a succession of equilibrium samplings, which amounts to an infinitely slow switching between the initial and
final states. The second one, the free energy perturbation method, was introduced by Zwanzig [35]. It recasts
free energy differences as a phase–space integral, so that usual sampling techniques can be employed. Notice
also that there exist many refinements for those two classes of techniques, such as umbrella sampling [31]. The
last and most recent class of methods uses dynamics arising from a switching at a finite rate. This can be done
using nonequilibrium dynamics (the so-called fast growth methods) with a suitable exponential reweighting, as
introduced by Jarzynski in [15,16]. Notice that the thermodynamic integration and free energy perturbation
methods can be seen, respectively, as the limits of infinitely slow and fast switching of nonequilibrium dynam-
ics, at least formally. Instead of being imposed a priori, this switching may also arise as the result of an equi-
librium sampling, using for example the Adaptive Biasing Force technique [7,12] or metadynamics [14]. In
those cases, the system is progressively forced to leave regions where the sampling of the reaction coordinate
has been completed.

It is still a matter of debate which method is the most efficient. While some results show that fast growth
methods can be competitive in some situations [11], other studies disagree [19]. The results of [19] indeed indi-
cate that even with the use of efficient path sampling techniques (see also [29,30,34]), fast growth methods do
not outperform conventional methods such as umbrella sampling or thermodynamic integration (at least in a
number of typical cases). However, general conclusions about the efficiency of fast growth methods are still to
be drawn, depending on the cases under consideration. We believe that there is room for improvements of this
relatively new method (e.g. by optimizing the switching schedule [24]). Let us also mention that this method is
straightforward to parallelize and naturally provides with a posteriori error bounds via the central limit the-
orem, since it involves many independent trajectories.

Most methods to compute free energy differences are well suited to the alchemical transition setting, but do
not straightforwardly extend to the reaction coordinate setting. This latter case is the focus throughout this
article. In this case, the methods described above require to consider dynamics restricted to the submanifold
Rz [5]. For computations using Hamiltonian dynamics, we refer for example to [4,24]. In the stochastic case,
thermodynamic integration in the reaction coordinate case using projected stochastic dynamics has recently
been put on a firm grounding [6,9]. On the other hand, stochastic nonequilibrium dynamics à la Jarzynski
in the reaction coordinate case was, to our knowledge, not studied mathematically. It is the aim of this
paper to perform such a study and to present a methodology to compute free energy differences in this
framework.
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Nonequilibrium computations of free energy differences in the reaction coordinate setting using stochastic
dynamics have until now used soft constraints to switch between the initial state centered on the submanifold
{n(q) = z0} and the final state centered on {n(q) = z1}. Steered molecular dynamics techniques use for example
a penalty term K(n(q) � z)2 in the energy of the system [22] (with K large) to ‘softly’ constraint the system to
remain close to the submanifold {n(q) � z = 0}, and varying the value z from 0 to 1 in a finite time T. It is
shown in [13] how to use such a biasing potential to exactly compute free energy differences (even for a finite
K), which is of particular interest for experimental studies. From a computational viewpoint, however, it is
expected that large values of K require small integration time steps. Moreover, it is observed in practice that
the statistical fluctuations increase with larger K (see [22]). Instead, we propose to replace the stiff constraining
potential K(n(q) � z)2 by a projection onto the submanifold {n(q) � z = 0}. This situation is reminiscent of the
case of molecular constraints, that can be enforced using a stiff penalty term, or more elegantly and often more
efficiently, using some projection of the dynamics involving Lagrange multipliers. This is the spirit of the well
known SHAKE algorithm [26].

We propose a nonequilibrium stochastic dynamics and an equality that allow to compute free energy
differences between states defined by different values of a reaction coordinate. The dynamics relies on a
projection onto the current submanifold at each time step, and we use the Lagrange multipliers associated
with this projection to estimate the free energy difference. More precisely, we use the difference between
these Lagrange multipliers and the external forcing term required for the finite time switching (see for
example the discretization (31)). The main results of the paper are the Feynman–Kac equality of Theorem
2.2 (which extends the proof of [13] to hard constraints), as well as the associated discretizations (33) and
(34).

The method we propose forces the system to pass free energy barriers, and thus enables free energy differ-
ence computations for metastable systems. Of course the reliability of the algorithm crucially depends on the
choice of the reaction coordinate, which represents the essential degrees of freedom. The reaction coordinate
should be rich enough in order to adequately describe the configuration paths of the system from the initial
state to the final state. The determination of the essential degrees of freedom of a system is a very important
problem, which is not the focus of this work. Thus, in the following, we suppose that a ‘‘good’’ reaction coor-
dinate is given, and we are interested in the computation of free energy differences associated with this reaction
coordinate.

Let us also notice that some recent refinements of nonequilibrium dynamics to compute free energy differ-
ences, especially path sampling techniques [34] and Interacting Particle Systems approaches [25] (which equil-
ibrate the nonequilibrium dynamics through some birth/death process based on the current work), can be
extended to the reaction coordinate setting using the techniques we present here. Moreover, we restrict our-
selves to the so-called overdamped Langevin dynamics, but it is possible to extend these results to the usual
Langevin dynamics (this is a work in progress).

The paper is organized as follows. In Section 1, the thermodynamic integration setting is outlined in the
reaction coordinate case. Section 2 then extends the method to nonequilibrium dynamics. Adapted numerical
schemes are proposed in Section 3, and some numerical results assessing the correctness of the method are
presented in Section 4. For clarity, we present the method in the case of a one-dimensional reaction coordinate
and postpone until Appendix A the proofs and the expressions for the multi-dimensional case.

1. Equilibrium computation of free energy differences

The aim of this section is to introduce the definitions of the free energy and the mean force, and to recall
how thermodynamic integration is used to compute free energy differences. The computation of the mean
force is based on projected stochastic differential equations (SDE). These SDEs will also be used for the dis-
cretization of Jarzynski equality in Section 2. This section mainly reviews results of [6].

1.1. Free energy and mean force

In the following, we denote by M � R3N the configuration space of the system when no parameter z is
involved. The state of the system is characterized by the value of a reaction coordinate n : M! ½0; 1�. The
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function n is supposed to be smooth and such that $n(q) 6¼ 0 for all q 2M. For a given value z 2 [0, 1], we
denote by Rz the submanifold
Rz ¼ fq 2M; nðqÞ ¼ zg ð3Þ

and we assume that

S
z2½0;1�Rz �M. For each point q 2 Rz, we also introduce the orthogonal projection oper-

ator P(q) onto the tangent space to Rz at point q defined by:
P ðqÞ ¼ Id�rn�rn

jrnj2
ðqÞ; ð4Þ
where � denotes the tensor product. The orthogonal projection operator on the normal space to Rz at point q

is defined by P^(q) = Id � P(q).
The free energy is then defined as
F ðzÞ ¼ �b�1 lnðZzÞ; ð5Þ

with
Zz ¼
Z

Rz

expð�bV ÞdrRz ; ð6Þ
where for any submanifold R of R3N , rR denotes the Lebesgue measure induced on R as a submanifold of R3N .
The associated Boltzmann probability measure is
dlRz
¼ Z�1

z expð�bV ÞdrRz : ð7Þ
Remark 1.1 (On the definition of the free energy). Two comments are in order about formula (5). First, this
formula is valid up to an additive constant, which is not important when considering free energy differences.
Second, the potential V in (6) may be a potential different from the actual potential seen by the particles. More
precisely, if the particles evolve in a potential V, the standard definition of the free energy in the physics and
chemistry literature is (5) with
Zz ¼
Z

expð�bV ÞdnðqÞ�z;
where dn(q)�z is a measure supported by Rz and defined by: for all test functions /,
Z
/ðqÞdnðqÞ�z ¼

Z
Rz

/jrnj�1drRz :
This amounts to considering (5) and (6) with V replaced by an effective potential V + b�1ln|$n| (see Remark
A.1 for the case of a multi-dimensional constraint). Since the results we present in this paper hold irrespective
of the physical signification of the potential V, we may assume without loss of mathematical generality that the
free energy is indeed given by (5) and (6). Let us emphasize that, in practice, the cumbersome computation of
the gradient of the additional term b�1ln|$n| in the modified potential (which intervenes in the projected SDEs
we use, see (27) and (28) or (29) and (30)) can be avoided resorting to some finite differences, as explained in [6].

Using the co-area formula (see (42) and Proposition A.2 for a proof in the multi-dimensional case), it is
possible to derive the following expression of the derivative of the free energy F with respect to z (the so-called
mean force) (see [21,27]):
F 0ðzÞ ¼ Z�1
z

Z
Rz

rn

jrnj2
� ðrV þ b�1HÞ expð�bV ÞdrRz ; ð8Þ
where
H ¼ �r � rn
jrnj

� �
rn
jrnj ð9Þ



628 T. Lelièvre et al. / Journal of Computational Physics 222 (2007) 624–643
is the mean curvature vector field of the surface Rz. The free energy can thus be expressed as an average with
respect to lRz

:

F 0ðzÞ ¼
Z

Rz

f ðqÞdlRz
ðqÞ; ð10Þ
where f is the local mean force defined by:
f ¼ rn

jrnj2
� ðrV þ b�1HÞ: ð11Þ
In the next section, we will explain how it is possible to compute this average with respect to lRz
, without

explicitly computing f, by using projected SDEs. This avoids in particular the computation of the mean cur-
vature vector H which involves second-order derivatives of n.

The principle of thermodynamic integration is to recast the free energy difference
DF ðzÞ ¼ F ðzÞ � F ð0Þ ð12Þ

between two reaction coordinates 0 and z as an integral over the mean force:
DF ðzÞ ¼
Z z

0

F 0ðyÞdy: ð13Þ
Therefore, in practice, thermodynamic integration computation of free-energy is as follows. First, the free en-
ergy difference DF(z) is estimated using quadrature formulae for the integral in (13), such as for example a
Gauss–Lobatto scheme:
DF ðzÞ ’
XK

i¼0

xiF 0ðyiÞ;
where the points {y0,y1, . . . ,yK} are in [0,z] and {x0,x1, . . . ,xK} are their associated weights. Second, the
derivatives F 0(yi) are computed as canonical averages over the submanifolds Ryi

, using projected SDEs (see
next section).

To obtain a free-energy profile (and not only a free-energy difference for a fixed final state), it is possible to
approximate the function DF(z) on the interval [0, 1] by a polynomial. This can be done for example by inter-
polating the derivative F 0 by splines, and integrating the resulting function (consistently with the normaliza-
tion DF(0) = 0).

1.2. Projected stochastic differential equations

In this section, we explain how to compute the mean force F 0(z) defined by (8) using projected SDEs, for a
fixed parameter z. We consider the solution Qt to the following SDE:
Q0 2 Rz;

dQt ¼ �P ðQtÞrV ðQtÞdt þ
ffiffiffiffiffiffiffiffiffiffi
2b�1

q
PðQtÞ � dBt;

(
ð14Þ
where Bt is the standard 3N-dimensional Brownian motion and � denotes the Stratonovich product. It is pos-
sible (see [6]) to check that lRz

is an invariant probability measure associated with the SDE (14). Under suit-
able assumptions, which we assume in the rest of the section, on the potential V and the surface Rz, the process
Qt is ergodic with respect to lRz

. Moreover, the SDE (14) can be rewritten in the following way:
dQt ¼ �rV ðQtÞdt þ
ffiffiffiffiffiffiffiffiffiffi
2b�1

q
dBt þrnðQtÞdKt; ð15Þ
where Kt is a real valued process, which can be interpreted as the Lagrange multiplier associated with the con-
straint n(Qt) = z (see the discretization in Section 3.1). This process can be decomposed into two parts:
dKt ¼ dKm
t þ dKf

t : ð16Þ
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The so-called martingale1 part Km
t (whose fluctuation is of order

ffiffiffiffiffi
Dt
p

over a time step Dt) is
1 Fo
dKm
t ¼ �

ffiffiffiffiffiffiffiffiffiffi
2b�1

q rn

jrnj2
ðQtÞ � dBt; ð17Þ
where Æ implicitly denotes the Itô product. The so-called bounded variation part Kf
t (whose fluctuation is of

order Dt over a time step Dt) is
dKf
t ¼

rn

jrnj2
ðQtÞ � rV ðQtÞdt þ b�1 rn

jrnj2
ðQtÞ � HðQtÞdt ¼ f ðQtÞdt; ð18Þ
f being the local mean force defined above by (11). Thus, since Qt is ergodic with respect to lRz
the mean force

can be obtained as a mean over the Lagrange multiplier Kt:

Proposition 1.2. The mean force is given by:
F 0ðzÞ ¼ lim
T!1

1

T

Z T

0

dKt ¼ lim
T!1

1

T

Z T

0

dKf
t : ð19Þ
Notice that the martingale part dKm
t , which has the largest fluctuations, has zero mean. In order to reduce

the variance, it is thus numerically convenient to perform the mean over the bounded variation part dKf
t rather

than over the whole Lagrange multiplier dKt (see Section 3).

We refer to [6] for a proof of Proposition 1.2, as well as for formulae involving higher dimensional reaction
coordinates. Such ideas have been used for a long time in the framework of Hamiltonian dynamics (see
[21,27]).

The interest of Eq. (19) is that the SDE (15) can be very naturally discretized as explained in Section (3.1)
below. Then, the average over a discretized trajectory of the process Kt converges to F 0(z). This is particularly
convenient for numerical purposes since it does not ask for explicitly computing the local force f. For further
details, we refer to [6] and to Section 3.1. In the next section, we use these ideas for the computation of the free
energy difference given through the Jarzynski equality.
2. Nonequilibrium stochastic methods in the reaction coordinate case

As opposed to quasistatic methods where the free energy difference between an initial state and a final state
is expressed by (13), in nonequilibrium methods, the free energy difference is expressed using a Feynman–Kac
average over nonequilibrium paths [15,13,25]
DF ð1Þ ¼ F ð1Þ � F ð0Þ ¼ �b�1 ln Eðe�bWðT ÞÞ; ð20Þ

where WðT Þ denotes the total work exerted along a nonequilibrium path (Qt,z(t))t2[0,T], with z(0) = 0 and
z(T) = 1.

We wish here to extend the Feynman–Kac formula derived in [13] for a parameter z which appears only in
the potential V, to the reaction coordinate case, where z labels submanifolds Rz (defined by Eq. (3)) of the state
space. To this end, we need to make precise the evolution of the constraints.

We consider a C1 path z : [0, T]! [0,1] of values of the reaction coordinate n, with z(0) = 0, and z(T) = 1.
Recall that the associated family of submanifolds of admissible configurations is denoted by
RzðtÞ ¼ fq 2M; nðqÞ ¼ zðtÞg;
and that the associated Boltzmann probability measures are
dlRzðtÞ
¼ Z�1

zðtÞ expð�bV ÞdrRzðtÞ :
We construct a diffusion (Qt)t2[0,T] so that Qt 2 Rz(t) for all t 2 [0, T] and (Qt)t2[0,T] satisfies the following prop-
erties (see Section 2.1 for a more rigorous formulation):
r our purposes, it is enough to think of a martingale as an Itô integral with respect to the Brownian motion (Bt)tP0.
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	 Q0 
 lRzð0Þ
,

	 For all t 2 [0,T], Qt+dt is the orthogonal projection on Rz(t+dt) of the position obtained by the unconstrained

displacement: Qt �rV ðQtÞdt þ
ffiffiffiffiffiffiffiffiffiffi
2b�1

q
dBt.

To each realization of this process, a work WðtÞ can be associated as
WðtÞ ¼
Z t

0

f ðQsÞz0ðsÞds;
where f is the local mean force defined above by (11). Then, we prove that the Feynman–Kac formula
(20) holds for the free energy F associated with the reaction coordinate and defined by (5). Notice that,
at least formally, in the limit of an infinitely slow switching from z(0) = 0 to z(T) = 1, Formula (20) cor-
responds to the thermodynamic integration formula (13). Formula (20) enables the computation of free
energy difference at arbitrary rates, through a correction consisting in a reweighting of the nonequilib-
rium paths.

The rest of this section is organized as follows. In Section 2.1, we make precise the process Qt we consider.
Then, in Section 2.2, we state the Feynman–Kac formula (20) for an one-dimensional reaction coordinate. We
recall that the formulae for the general case involving higher dimensional reaction coordinates, as well as the
main proofs, are presented in Appendix A.

2.1. The nonequilibrium projected stochastic dynamics

The considered diffusion reads, in the Stratonovich setting:
Q0 
 lRzð0Þ
;

dQt ¼ �P ðQtÞrV ðQtÞdt þ
ffiffiffiffiffiffiffiffiffiffi
2b�1

q
P ðQtÞ � dBt þrnðQtÞdKext

t ;

dKext
t ¼

z0ðtÞ
jrnðQtÞj2

dt:

8>>><>>>: ð21Þ
With a view to the discretization of Qt, let us notice that Qt can be characterized by the following property:

Proposition 2.1. The process Qt solution to (21) is the only Itô process satisfying for some real-valued adapted Itô

process (Kt)t2[0,T]:
Q0 
 lRzð0Þ
;

dQt ¼ �rV ðQtÞdt þ
ffiffiffiffiffiffiffiffiffiffi
2b�1

q
dBt þrnðQtÞdKt;

nðQtÞ ¼ zðtÞ:

8>><>>:

Moreover, the process (Kt)t2[0,T] can be decomposed as
Kt ¼ Km
t þ Kf

t þ Kext
t ; ð22Þ
with the martingale part
dKm
t ¼ �

ffiffiffiffiffiffiffiffiffiffi
2b�1

q rn

jrnj2
ðQtÞ � dBt;
the local force part (see (11) for the definition of f)
dKf
t ¼

rn

jrnj2
ðQtÞ � ðrV ðQtÞdt þ b�1HðQtÞÞdt ¼ f ðQtÞdt; ð23Þ
and the external forcing (or switching) term
dKext
t ¼

z0ðtÞ
jrnðQtÞj

2
dt:
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The proof of Proposition 2.1 is easy and consists in computing dn(Qt) by Itô’s calculus and identifying the
bounded variation and the martingale parts of the stochastic processes.

The difference with the projected stochastic differential Eq. (14) considered in the thermodynamic integra-
tion setting is that the out-of-equilibrium evolution of the constraints z(t) creates a drift rnðQtÞdKext

t along the
reaction coordinate. This drift can be interpreted as an external forcing required for the switching to take place
at a finite rate, and must be subtracted from the Lagrange multiplier Kt in order to obtain a correct expression
for the work WðtÞ involved in the Feynman–Kac fluctuation equality (see Eq. (25) below). This correction is
quantitatively important when the switching is not slow.

2.2. The Feynman–Kac fluctuation equality

Let us define the nonequilibrium work exerted on the diffusion (21) by:
WðtÞ ¼
Z t

0

f ðQsÞz0ðsÞds; ð24Þ
where f is the local mean force defined above by (11). In practice, the nonequilibrium work WðtÞ can be com-
puted by using the local force part dKf

t (see (23)), as in the thermodynamic integration method (see (19)). Thus,
the formula we use to compute WðtÞ is rather:
WðtÞ ¼
Z t

0

z0ðsÞdKf
s; ð25Þ
since Kf
t can be obtained by a natural numerical scheme (see Section 3), avoiding the cumbersome computa-

tions of the mean curvature vector H in the expression of f (as already explained in Section 1.1).
We can now state the generalization of the Jarzynski nonequilibrium equality to the case when the switch-

ing is parameterized by a reaction coordinate.

Theorem 2.2 (Feynman–Kac fluctuation equality). For any test function u and "t 2 [0,T], it holds
ZzðtÞ

Zzð0Þ

Z
RzðtÞ

udlRzðtÞ
¼ EðuðQtÞe�bWðtÞÞ:
In particular, we have the work fluctuation identity: "t 2 [0,T],
DF ðzðtÞÞ ¼ F ðzðtÞÞ � F ðzð0ÞÞ ¼ �b�1 lnðEðe�bWðtÞÞÞ: ð26Þ

As in the alchemical case [13], the proof follows from a Feynman–Kac formula. The proof of this theorem

is presented in the general multi-dimensional case in Appendix A (see Theorem A.5).
3. Discretization of the dynamics

The main interest of the above formulae (13)–(19), (25) and (26) is that they admit natural time discretiza-
tions. The principle is to use a predictor–corrector scheme for the associated dynamics (14) and (21), and to
use the Lagrange multiplier Kt to compute the local mean force f.

Section 3.1 is mainly a review of the results of [6] and presents this idea in the context of thermodynamic
integration. Then, we extend the method to the case of evolving constraints in Section 3.2.
3.1. Discretization of the projected diffusion

For the projected SDE (15) onto a submanifold Rz = {n(q) � z = 0}, two discretizations of the dynam-
ics, extending the usual Euler–Maruyama scheme, are proposed in [6]. These numerical schemes for con-
strained Brownian dynamics are in the spirit of the so-called RATTLE [2] and SHAKE [26] algorithms
classical used for constrained Hamiltonian dynamics, and also related with the algorithms proposed in
[32,1,20].
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The first one is:
Qnþ1 ¼ Qn �rV ðQnÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtb�1

q
U n þ DKnþ1rnðQnþ1Þ;

where DKnþ1 is such that nðQnþ1Þ ¼ z;

8<: ð27Þ
where Dt is the time step and Un is a 3N-dimensional standard Gaussian random vector. Notice that (27) ad-
mits a natural variational interpretation, since Qn+1 can be seen as the closest point on the submanifold Rz to

the predicted position Qn �rV ðQnÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtb�1

q
U n. The real DKn+1 is then the Lagrange multiplier associ-

ated with the constraint n(Qn+1) = z.
Another possible discretization of (15) is
Qnþ1 ¼ Qn �rV ðQnÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtb�1

q
U n þ DKnþ1rnðQnÞ;

where DKnþ1 is such that nðQnþ1Þ ¼ z:

8<: ð28Þ
Although this scheme is not naturally associated with a variational principle, it may be more practical since its
formulation is more explicit. Notice also that we use the same notation DKn for the Lagrange multipliers for
both (27) and (28) (and later for (29) and (30)), since all the formulas we state in terms of DKn are verified
whatever the constrained dynamics.

To solve Eq. (27), classical methods for optimization problems with constraints can be used. We refer to
[10] for a presentation of the classical Uzawa algorithm, and to [3] for more advanced methods. Problem
(28) can be solved using classical methods for nonlinear problems, such as the Newton method (see [3]).
We also refer to Chapter 7 of [18] where similar problems are discussed, for the classical RATTLE and
SHAKE schemes used for Hamiltonian dynamics with constraints.

Both schemes are consistent (the discretization error goes to 0 when the time step Dt goes to 0) with the
projected diffusion (15) (see [6]). Accordingly, DKn+1 is a consistent discretization of

R tnþ1

tn
dKt and therefore,

it can be proven [6]:
lim
T!1

lim
Dt!0

1

T

XT=Dt

n¼1

DKn ¼ F 0ðzÞ;
which is the discrete counterpart of the trajectory average (19). In [6], a variance reduction technique is pro-
posed, which consists in extracting the bounded variation part DKf

n of DKn (resorting locally to reversed
Brownian increments). We give some details of an adaptation of this method for evolving constraints in
the next section.

3.2. Discretization with evolving constraints

When nonequilibrium dynamics are considered, the constraint is stated as n(Qt) = z(t). The reaction coor-
dinate path is first discretized as fzð0Þ; . . . ; zðtNT Þg where NT is the number of time steps. For example, equal
time increments can be used, in which case Dt ¼ T

NT
and tn = nDt (we refer to Remark 3.1 below for some

refinements). The initial conditions Q0 are sampled according to lR0
. A way to do that is to subsample a long

trajectory of the projected SDE on R0 (using the schemes (27) or (28)).
The projected SDE on evolving constraints (21) is then discretized with the scheme (27) or (28), taking into

account the evolution of the constraint:
Qnþ1 ¼ Qn �rV ðQnÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtb�1

q
U n þ DKnþ1rnðQnþ1Þ;

where DKnþ1 is such that nðQnþ1Þ ¼ zðtnþ1Þ;

8<: ð29Þ
or
Qnþ1 ¼ Qn �rV ðQnÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtb�1

q
U n þ DKnþ1rnðQnÞ;

where DKnþ1 is such that nðQnþ1Þ ¼ zðtnþ1Þ:

8<: ð30Þ
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It remains to extract the force part DKf
nþ1 from the discretized Lagrange multiplier DKn+1 (consistently with

(22)). We propose two methods. First, this can be done by simply subtracting the drift and the martingale part
DKf
nþ1 ¼ DKnþ1 �

zðtnþ1Þ � zðtnÞ
jrnðQnÞj

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtb�1

q rnðQnÞ
jrnðQnÞj

2
� Un: ð31Þ
Another possibility in the spirit of the variance reduction techniques used in [6] can also be used. Consider the
following coupled dynamic with locally time-reversed constraint evolution (written here for the scheme
(29)):
QR
nþ1 ¼ Qn �rV ðQnÞDt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtb�1

q
U n þ DKR

nþ1rnðQR
nþ1Þ;
with DKR
nþ1 such that:
1

2
ðnðQR

nþ1Þ þ nðQnþ1ÞÞ ¼ nðQnÞ:
The position QR
nþ1 is computed as Qn+1 in (29), but with a projection on R2nðQnÞ�nðQnþ1Þ instead of Rzðtnþ1Þ, and

using the Brownian increment �
ffiffiffiffiffi
Dt
p

Un instead of
ffiffiffiffiffi
Dt
p

U n. Notice that in case of a constant increment
for the constraints, we have nðQR

nþ1Þ ¼ 2nðQnÞ � nðQnþ1Þ ¼ zðtn�1Þ. The force part DKf
nþ1 is then obtained

through
DKf
nþ1 ¼

1

2
ðDKnþ1 þ DKR

nþ1Þ; ð32Þ
which can be shown to be a consistent time discretization of
R tnþ1

tn
dKf

t .

3.3. Computation of free energy using a Feynman–Kac equality

The consistent discretization of Qt, and more precisely of
R tnþ1

tn
dKf

t , we have obtained in the previous section
can now be used to approximate the work WðtÞ defined by (25) by
W0 ¼ 0;

Wnþ1 ¼Wn þ zðtnþ1Þ�zðtnÞ
tnþ1�tn

DKf
nþ1;

(
ð33Þ
using either the dynamics (29) or (30), and the local force part of the Lagrange multiplier computed by (31) or
(32). Averaging over M independent realizations (the corresponding works being labeled by an upper index
1 6 m 6M), an estimator of the free energy difference DF(z(T)) is, using Theorem 2.2,
cDF ðzðT ÞÞ ¼ �b�1 ln
1

M

XM

m¼1

e�bWm
NT

 !
: ð34Þ
The estimator cDF ðzðT ÞÞ converges to DF(z(T)) as Dt! 0 and M! +1. It is clear that the estimation of
DF(z(T)) by (34) is straightforward to parallelize since the ðWm

NT
Þ16m6M are independent.

Notice that, even in the limit Dt! 0, cDF ðzðT ÞÞ is a biased estimator. Indeed, expð�bcDF ðzðT ÞÞÞ is an unbi-

ased estimator of exp(�bDF(z(T))), and therefore, using the concavity of ln, EðcDF ðzðT ÞÞÞP DF ðzðT ÞÞ. Recent

works propose corrections to this systematic bias using asymptotic expansions in the limit M! +1 (see for
instance [24,36]).

Remark 3.1 (On practical implementation). Notice that it may be useful to adaptively refine the time step over
each stochastic trajectories, using for example the work evolution rate ðWn �Wn�1ÞnP1 as a refinement
criterion.

As noticed in [24], it is also possible to optimize the evolution of the constraint z(t), for example by
minimizing the variance of the results obtained for a priori schedules for the evolving constraint on a small set
of preliminary runs.
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4. Numerical results

We present in this section some illustrations of the algorithm we have described above to compute free
energy differences through nonequilibrium paths. In Section 4.1, a two-dimensional toy potential V is used,
for which we can compare the results with analytical profiles. A more realistic test case in Section 4.2 demon-
strates the ability of the method to compute free energy profiles in presence of a free energy barrier.

Our aim in this section is not to compare the numerical efficiency of the thermodynamic integration method
presented in Section 1 (or any other method) with nonequilibrium computations, since it is difficult to draw
general conclusions about such comparisons. However, we compare on a simple example in Section 4.1, the
numerical efficiency of out-of-equilibrium computations using a few long trajectories or many short trajecto-
ries, at a fixed computational cost.

4.1. A two-dimensional toy problem

We consider the two-dimensional potential introduced in [33]
0

0.005

0.01

Fig. 1.
right.
V ðx; yÞ ¼ cosð2pxÞð1þ d1yÞ þ d2y2; ð35Þ

where d1 and d2 are two positive constants. Some corresponding Boltzmann–Gibbs probability densities are
depicted in Fig. 1.

We want to compute the free energy difference profile between the initial state x = x0 = �0.5 and the tran-
sition state x = x1 = 0. Notice that the saddle point is (x1,y1) = (0,0) for d1 = 0, but is increasingly shifted
toward lower values of y1 as d1 increases. We parameterize the transition along the x-axis, either with the reac-
tion coordinate
nðx; yÞ ¼ x� x0

x1 � x0

; ð36Þ
or with the reaction coordinate (n P 2)
gnðx; yÞ ¼
1

2n � 1
1þ x� x0

x1 � x0

� �n

� 1

� �
: ð37Þ
For these reaction coordinates, the initial state (respectively the transition state) corresponds to a value of the
reaction coordinate z = 0 (respectively z = 1). The analytical expression of the free energy difference that we
consider here is, for a reaction coordinate m(x,y) (such as n or gn defined above)
DF mðzÞ ¼ �b�1 ln

R
e�bV ðx;yÞdmðx;yÞ�zR
e�bV ðx;yÞdmðx;yÞ

� �
;

where the distribution dm(x,y)�z is defined in Remark 1.1 above. Notice that even though the initial state
R0 = {x = �0.5} and the final state R1 = {x = 0} are the same for the reaction coordinates n and gn, the asso-
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Plot of some probability densities corresponding to the potential (35) for b = 1, d2 = 2p2, and d1 = 0 on the left or d1 = 10 on the
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Fig. 2. Free energy profiles using the potential (35) with b = 1, d1 = 30, and d2 = 2p2, and the reaction coordinate (36) on the left, or the
reaction coordinate (37) with n = 5 on the right. Analytical reference profiles are in dotted lines. The dashed lines (respectively the solid
lines) represent the upper and lower bound of the 95% confidence interval (obtained over 100 independent realizations) for nonequilibrium
computations with M = 103 replicas (respectively with M = 104 replicas). The switching time is T = 1 and the time step is Dt = 0.005 on
the left and Dt = 0.0025 on the right.
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ciated free energy differences differ. This is due to the fact that $n 6¼ $gn, and therefore dnðx;yÞ�z 6¼ dgnðx;yÞ�z.
More precisely,
DF nðzÞ ¼ � cosð2px0Þ þ cosð2pxnðzÞÞ þ
ðd1Þ2

4d2

ðcos2ð2px0Þ � cos2ð2pxnðzÞÞÞ;
with
xnðzÞ ¼ x0 þ zðx1 � x0Þ;

and
DF gn
ðzÞ ¼ � cosð2px0Þ þ cosð2pxgn

ðzÞÞ þ ðd1Þ2

4d2

ðcos2ð2px0Þ � cos2ð2pxgn
ðzÞÞÞ þ n� 1

b
ln 1þ xgn

ðzÞ � x0

x1 � x0

� �
;

with
xgn
ðzÞ ¼ x0 þ ððð2n � 1Þzþ 1Þ1=n � 1Þðx1 � x0Þ:
Free energy profiles for the two reaction coordinates considered here can then be computed using the discret-
ization proposed in Section 3.3. Averaging over several realizations, error estimates can be proposed: in par-
ticular, the standard deviation can be computed for all intermediate points z 2 [0,1], so that, for all values z, a
confidence interval around the empirical mean can be proposed. We represent on Fig. 2 the analytical profiles,
and the lower and upper bounds of the 95% confidence interval for M = 103 and M = 104, using here and
henceforth a linear schedule: z(t) = t/T. The initial conditions are created by subsampling every 100 time steps
a trajectory constrained to remain on the initial submanifold R0. As announced above, the profiles obtained
with gn and n are not exactly the same, though the general shape is preserved. These figures also show that the
variance increases with z. Therefore, to further test the convergence of the method, it is enough here to char-
acterize the convergence of the value for the end point at z = 1.

We study the convergence of the end value DF(1) computed with the out-of-equilibrium dynamics with
respect to the number of replicas M and the time step Dt, using the reaction coordinate (36) as an example.
The results are presented in Table 1. The time step Dt does not seem to have any noticeable influence on
the final result, as long as it remains in a reasonable range. As expected, the error gets smaller as M increases.



Table 1
Free energy differences DF(1) obtained by nonequilibrium computations for the reaction coordinate (36) with b = 1, d1 = 1, and d2 = 30

Dt T M cDF ðzðT ÞÞ
0.001 1 103 2.056 (0.274)
0.0025 1 103 2.033 (0.259)
0.005 1 103 2.076 (0.286)
0.01 1 103 2.073 (0.278)

0.005 1 103 2.076 (0.286)
0.005 1 104 2.014 (0.116)
0.005 1 105 2.001 (0.045)

0.005 1 104 2.014 (0.116)
0.005 10 103 1.999 (0.029)
0.005 100 102 2.001 (0.025)
0.005 1000 101 1.997 (0.022)

The results are presented as follows: EðcDF ðzðT ÞÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðcDF ðzðT ÞÞÞ

q� �
(the estimates of these quantities are obtained by averages over 100

independent runs). The exact value is DF(1) = 2.
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In Table 1, we also show that, in this particular case, for a fixed computational cost and provided that the
switching time is large enough,2 computing many short trajectories is as efficient as computing a few longer
ones (the mean and the variance are essentially unchanged). This conclusion also holds for the more realistic
test case presented in next section. The computation of many trajectories can be straightforwardly and very
efficiently parallelized.

We finally mention that we are able to exhibit the bias of the Jarzynski estimator in this particular case (see
Section 3.3 and [36]). We observe that the estimator cDF ðzðT ÞÞ is generally greater than DF(z(T)). More pre-

cisely, averaging over 104 realizations, with the parameters T = 1 and Dt = 0.005, we obtain the following 95%

confidence intervals for cDF ðzðT ÞÞ, for various values of M : cDF ðzðT ÞÞ ¼ 2:0576� 0:0059 for M = 103,cDF ðzðT ÞÞ ¼ 2:0095� 0:0026 for M = 104, and cDF ðzðT ÞÞ ¼ 2:00075 � 0:0010 for M = 105. As expected, the

bias goes to zero when M!1.

4.2. Model system for conformational changes influenced by solvation

We consider a system composed of N particles in a periodic box of side length l, interacting through the
purely repulsive WCA pair potential [8,28]:
2 Of
V WCAðrÞ ¼
4� r

r

� �12 � r
r

� �6
h i

þ � if r 6 r0;

0 if r > r0;

(

where r denotes the distance between two particles, � and r are two positive parameters and r0 = 21/6r. Among
these particles, two (numbered 1 and 2 in the following) are designated to form a dimer while the others are
solvent particles. Instead of the above WCA potential, the interaction potential between the two particles of
the dimer is a double-well potential
V SðrÞ ¼ h 1� ðr � r0 � wÞ2

w2

" #2

; ð38Þ
where h and w are two positive parameters. The potential VS exhibits two energy minima, one corresponding
to the compact state where the length of the dimer is r = r0, and one corresponding to the stretched state where
this length is r = r0 + 2w. The energy barrier separating both states is h. Fig. 3 presents a schematic view of the
system.
course, this threshold time depends on the system under study.



Fig. 3. Schematic views of the system, when the dimer is in the compact state (Left), and in the stretched state (Right). The interaction of
the two particles forming the dimer is described by a double well potential. All the other interactions are of WCA form.
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The reaction coordinate used is
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Dt = 0
nðqÞ ¼ jq1 � q2j � r0

2w
; ð39Þ
where q1 and q2 are the positions of the particles forming the dimer. The compact state (respectively the
stretched state) corresponds to a value of the reaction coordinate z = 0 (respectively z = 1).

The parameters used for the simulations are: b = 1, � = 1, r = 1, h = 1, w = 0.5, and N = 16. We still use a
linear schedule: z(t) = t/T. The side length l of the simulation box takes two values: l = 1.3 (high density state)
and l = 3 (low density state). Fig. 4 presents some plots of the free energy difference profiles computed using
nonequilibrium dynamics, as well as reference profiles obtained by thermodynamic integration. The results
show that nonequilibrium estimates are consistent with thermodynamic integration. Our experience on this
particular example also shows that it is computationally as efficient to simulate several short nonequilibrium
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Comparison of free energy difference profiles using the reaction coordinate (39), at low densities (l = 3) on the left, and high
es (l = 1.3) on the right. The double well potential VS is represented in dashed line. The reference free energy difference profile
ted with a very precise thermodynamic integration is represented in dotted line. We used NTI = 101 thermodynamic integration
(uniformly distributed over (0,1)) and averaged the mean force over MTI = 107 configurations for each fixed value of z. The upper
wer bounds of the 95% confidence interval (obtained over 50 independent realizations) for out-of-equilibrium computations are
nted with solid lines. We used M = 1000 nonequilibrium trajectories, a switching time T = 1, and a time step Dt = 0.00025 (left) or
.0005 (right).
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trajectories (provided the switching time is not too small, say, T 
 1 in the units used here, so that the diffusion
process can take place), or one single long trajectory where the switching is done slowly (as already observed in
Section 4.1).

The free energy profiles highlight the relative stabilities of the two conformations of the dimer: at low den-
sities (Fig. 4, Left) the stretched conformation has a lower free energy and is thus expected to be more stable
(this can indeed be verified by running long molecular dynamics trajectories and monitoring the time spent in
each conformation). When the density increases, the compact conformation becomes more and more likely. At
the density considered in Fig. 4 (Right), the compact state already has a free energy slightly smaller than the
stretched state. Notice also that the free energy barrier increases as the density increases, so that spontaneous
transitions are less and less frequent. But since we know here a reaction coordinate, we can enforce the tran-
sition. This prevents us from running and monitoring long trajectories to get sufficient statistics to compare
relative occurrences of both states.
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Appendix A. The multi-dimensional case

In this appendix, we generalize the previous results for nonequilibrium computation of free energy differ-
ences to the case of multi-dimensional reaction coordinates.

A.1. Geometric setting and basic notation and formulae

We consider a d-dimensional system of smooth reaction coordinates n ¼ ðn1; . . . ; ndÞ : R3N ! Rd , nonsingu-
lar on an open domain M � R3N
8q 2M; rangeðrn1ðqÞ; . . . ;rndðqÞÞ ¼ d;
and a smooth path of associated coordinates
z ¼ ðz1; . . . ; zdÞ : ½0; T � ! Rd :
Accordingly, we define for all t 2 [0, T] a smooth submanifold of codimension d contained in M:
RzðtÞ ¼ fq 2 R3N ; nðqÞ ¼ zðtÞg �M:
In the constraints space Rd , coordinates are labeled by Greek letters and we use the summation convention on
repeated indices. In the configuration space R3N , coordinates are labeled by Latin letters and we also use the
summation convention on repeated indices. We denote by X Æ Y = XiYi the scalar product of two vector fields
of R3N , by M:N = Mi,jNi,j the contraction of two tensor fields of R3N , and by (X � Y)i,j = XiYj the tensor prod-
uct of two vector fields of R3N .

The d · d matrix
Ga;c ¼ rna � rnc
is the Gram matrix of the constraints. It is symmetric and strictly positive on M. We denote by G�1
a;c the (a,c)

component of G�1, the inverse matrix of G. At each point q 2M, we define the orthogonal projection
operator
P? ¼ G�1
a;crna �rnc
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onto the normal space to Rn(q) and the orthogonal projection operator
P ¼ Id� P?
onto the tangent space to Rn(q). The mean curvature vector field of the submanifold is defined by:
H ¼ �r � ððdet GÞ1=2G�1
a;crncÞðdet GÞ�1=2rna; ð40Þ
and satisfies:
Hi ¼ P j;krjP i;k:
We recall the divergence theorem on submanifolds: for any smooth vector field / : R3N ! R3N with compact
support,
Z

Rz

divRð/ÞdrRz ¼ �
Z

Rz

H � /drRz ; ð41Þ
where divR(/) = Pi,j$i/j denotes the surface divergence, and rRz is the induced Lebesgue measure on the sub-

manifold Rz of R3N .
We will also use the co-area formula: for any smooth function / : R3N ! R,
Z

R3N
/ðqÞðdet GðqÞÞ1=2dq ¼

Z
Rd

Z
Rz

/drRz dz: ð42Þ
These definitions and formulae are provided with more details in [6].

A.2. Free energy and constrained diffusions for multi-dimensional reaction coordinates

As in the one-dimensional case, the Boltzmann–Gibbs distribution restricted on the submanifold Rz is
defined by:
dlRz
¼ Z�1

z expð�bV ÞdrRz ;
with
Zz ¼
Z

Rz

expð�bV ÞdrRz :
The associated free energy is:
F ðzÞ ¼ �b�1 lnðZzÞ:
Remark A.1 (On the definition of the free energy: the multi-dimensional case). As in the one-dimensional case
(see Remark 1.1), if the particles initially evolve in a potential V, the classical definition of the free energy is as
above, but with V replaced by an effective potential V + b�1ln((detG)1/2). The computation of the gradient of
this potential in the dynamics then involves second-order derivatives of n, which can be approximated in
practice by finite differences (see [6]).

For any 1 6 a 6 d, we now introduce the local mean force along $na (which generalizes (11)):
fa ¼ G�1
a;crnc � ðrV þ b�1HÞ: ð43Þ
As in the one-dimensional case (see Eq. (10)), we obtain the derivative of the mean force by averaging the local
mean force:

Proposition A.2. The derivative of the free energy F with respect to za is given by:
raF ðzÞ ¼
Z

Rz

fadlRz
:
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Proposition A.2 is a corollary of:

Lemma A.3. For any test function u with compact support in M, we have:
ra

Z
Rz

u expð�bV ÞdrRz

� �
¼
Z

Rz

ðG�1
a;crnc � ru� bfauÞ expð�bV ÞdrRz :
Proof. It is enough to prove the formula in the case V = 0, up to a modification of the test function u. For any
test function g : R! R with compact support, we have (using successively an integration by parts on R, the
co-area formula (42), an integration by parts on R3N , and finally again (42)):
Z

Rd
gðzaÞra

Z
Rz

udrRz

� �
dz ¼ �

Z
Rd

Z
Rz

g0ðzaÞudrRz dz;¼ �
Z

R3N
g0 � nauðdet GÞ1=2dq;

¼ �
Z

R3N
G�1

a;crnc � rðg � naÞuðdet GÞ1=2dq;

¼
Z

R3N
g � nar � ðG�1

a;crncuðdet GÞ1=2Þdq;

¼
Z

Rd
gðzaÞ

Z
Rz

r � ðG�1
a;crncuðdet GÞ1=2Þðdet GÞ�1=2drRz dz;
which gives the result using the expression (40) of the mean curvature vector H. h

We now define the constrained diffusion (which generalizes (21)):
Q0 
 lRzð0Þ
;

dQt ¼ �P ðQtÞrV ðQtÞdt þ
ffiffiffiffiffiffiffiffiffiffi
2b�1

q
P ðQtÞ � dBt þrnaðQtÞdKext

a;t ;

dKext
a;t ¼ G�1

a;cðQtÞz0cðtÞdt; 81 6 a 6 d:

8>>><>>>: ð44Þ
The stochastic process Qt can be characterized by the following property:

Proposition A.4. The process Qt solution to (44) is the only Itô process satisfying for some adapted Itô process
(K1,t,. . .,Kd,t)t2[0,T] with values in Rd :
Q0 
 lRzð0Þ
;

dQt ¼ �rV ðQtÞdt þ
ffiffiffiffiffiffiffiffiffiffi
2b�1

q
dBt þrnaðQtÞdKa;t;

nðQtÞ ¼ zðtÞ:

8>><>>:

Moreover, the process (Ka,t)t2[0,T] can be decomposed as
Ka;t ¼ Km
a;t þ Kf

a;t þ Kext
a;t ;
with the martingale part
dKm
a;t ¼ �

ffiffiffiffiffiffiffiffiffiffi
2b�1

q
G�1

a;crncðQtÞ � dBt;
the local force part (see (43) for the definition of fa)
dKf
a;t ¼ faðQtÞdt;
and the external forcing (or switching) term
dKext
a;t ¼ G�1

a;cðQtÞz0cðtÞdt:
The proof consists in computing dn(Qt) by Itô’s calculus and identifying the bounded variation and the
martingale parts of the stochastic processes.
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A.3. The Feynman–Kac fluctuation equality

Theorem 2.2 is generalized as:

Theorem A.5 (Feynman–Kac fluctuation equality). Let us define the nonequilibrium work exerted on the

diffusion Qt solution to (44) by:
WðtÞ ¼
Z t

0

faðQsÞz0aðsÞds ¼
Z t

0

z0aðsÞdKf
a;s:
Then, we have the following fluctuation equality: for any test function u, and "t 2 [0,T],
ZzðtÞ

Zzð0Þ

Z
RzðtÞ

udlRzðtÞ
¼ EðuðQtÞe�bWðtÞÞ: ð45Þ
In particular, we have the work fluctuation identity: "t 2 [0,T],
DF ðzðtÞÞ ¼ F ðzðtÞÞ � F ðzð0ÞÞ ¼ �b�1 lnðEðe�bWðtÞÞÞ: ð46Þ
Proof. For any s 2 [0, T] and x 2M, let us introduce ðQs;x
t Þt2½s;T �, the stochastic process satisfying the SDE (44),

starting from x at time s:
Qs;x
s ¼ x;

dQs;x
t ¼ �P ðQs;x

t ÞrV ðQs;x
t Þdt þ

ffiffiffiffiffiffiffiffiffiffi
2b�1

q
P ðQs;x

t Þ � dBt þrnaðQs;x
t ÞdKext

a;t ;

dKext
a;t ¼ G�1

a;cðQs;x
t Þz0cðtÞdt; 81 6 a 6 d:

8>><>>: ð47Þ
Notice that for any s 2 [0,T], there is an open neighborhood ðs�; sþÞ �Ms of (s,Rz(s)) in R�M such that the
diffusion ðQs;x

t Þt2½s;T � remains in M almost surely. This holds since this process satisfies dnðQs;x
t Þ ¼ z0ðtÞdt and

therefore nðQs;x
t Þ ¼ nðxÞ þ zðtÞ � zðsÞ. This gives usual regularity assumptions sufficient to get a backward

semi-group (t being from now on fixed in (0, T) and s varying in [0, t]):
uðs; xÞ ¼ E uðQs;x
t Þ exp �b

Z t

s
faðQs;x

r Þz0aðrÞdr
� �� �

;

satisfying the following partial differential equation (PDE) on ðs�; sþÞ �Ms:
osu ¼ �Lsðuðs; :ÞÞ þ bz0aðsÞfau;
where Ls is the generator of the diffusion Qt solution to (44):
Ls ¼ b�1P : r2 � PrV � r þ b�1H � r þ z0cðsÞG�1
a;crna � r:
Now, using Lemma A.3, we have:
d

ds

Z
RzðsÞ

uðs; :Þ expð�bV ÞdrRzðsÞ ¼
Z

RzðsÞ

ð�Lsðuðs; :ÞÞ þ z0aðsÞG�1
a;crnc � ruðs; :ÞÞ expð�bV ÞdrRzðsÞ ;

¼ �
Z

RzðsÞ

ðb�1P : r2uðs; :Þ � PrV � ruðs; :Þ þ b�1H � ruðs; :ÞÞ expð�bV ÞdrRzðsÞ ;

¼ �b�1

Z
RzðsÞ

ðdivRðruðs; :Þ expð�bV ÞÞ þ H � ruðs; :Þ expð�bV ÞÞdrRzðsÞ ;¼ 0;
by the divergence theorem (41). Therefore
Z
RzðtÞ

uðt; :Þ expð�bV ÞdrRzðtÞ ¼
Z

Rzð0Þ

uð0; :Þ expð�bV ÞdrRzð0Þ ;
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which yields
Z
RzðtÞ

u expð�bV ÞdrRzðtÞ ¼ Zzð0ÞE uðQtÞ exp �b
Z t

0

faðQrÞz0aðrÞdr
� �� �

;

where Qt satisfies (44). This proves (45) and (46) is obtained by taking u = 1. h
A.4. The numerical scheme

The adaptation of the algorithm we propose for the one-dimensional case to the multi-dimensional case is
straightforward. Indeed, the generalizations of schemes (29) and (30) to the multi-dimensional case are,
respectively:
Qnþ1 ¼ Qn �rV ðQnÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtb�1

q
U n þ DKa;nþ1rnaðQnþ1Þ;

where ðDKa;nþ1Þ16a6d is such that nðQnþ1Þ ¼ zðtnþ1Þ;

8<:
Qnþ1 ¼ Qn �rV ðQnÞDt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtb�1

q
U n þ DKa;nþ1rnaðQnÞ;

where ðDKa;nþ1Þ16a6d is such that nðQnþ1Þ ¼ zðtnþ1Þ:

8<:

The force part DKf

a;n of DKa,n is obtained by similar procedures as those described in Section 3.2. For example,
the generalization of (31) is:
DKf
a;nþ1 ¼ DKa;nþ1 � G�1

a;cðQnÞðzcðtnþ1Þ � zcðtnÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtb�1

q
G�1

a;crncðQnÞ � U n:
The generalization of (32) is also straightforward.

Now, the estimator cDF ðzðT ÞÞ of the free energy difference DF(z(T)) is given by (34), with the following
approximation of the work WðtÞ:
W0 ¼ 0;

Wnþ1 ¼Wn þ zaðtnþ1Þ�zaðtnÞ
tnþ1�tn

DKf
a;nþ1;

(

which generalizes (33). Notice that Remark 3.1 also holds for a multi-dimensional reaction coordinate.
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